3.1.96 \(\int \csc ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\) [96]

3.1.96.1 Optimal result
3.1.96.2 Mathematica [B] (verified)
3.1.96.3 Rubi [A] (verified)
3.1.96.4 Maple [B] (warning: unable to verify)
3.1.96.5 Fricas [A] (verification not implemented)
3.1.96.6 Sympy [F]
3.1.96.7 Maxima [F]
3.1.96.8 Giac [F(-2)]
3.1.96.9 Mupad [F(-1)]

3.1.96.1 Optimal result

Integrand size = 25, antiderivative size = 127 \[ \int \csc ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=-\frac {(a+b) \text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{2 \sqrt {a} f}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f}-\frac {\cot (e+f x) \csc (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{2 f} \]

output
-1/2*(a+b)*arctanh(sec(f*x+e)*a^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))/f/a^(1/2 
)+arctanh(sec(f*x+e)*b^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))*b^(1/2)/f-1/2*cot 
(f*x+e)*csc(f*x+e)*(a-b+b*sec(f*x+e)^2)^(1/2)/f
 
3.1.96.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(586\) vs. \(2(127)=254\).

Time = 5.75 (sec) , antiderivative size = 586, normalized size of antiderivative = 4.61 \[ \int \csc ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=-\frac {\cot (e+f x) \csc (e+f x) \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^2(e+f x)} \left (-a \log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )-b \log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )+a \cos (e+f x) \log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )+b \cos (e+f x) \log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )+\frac {\sqrt {a} \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^4\left (\frac {1}{2} (e+f x)\right )}}{\sqrt {2}}-16 \sqrt {a} \sqrt {b} \text {arctanh}\left (\frac {-\sqrt {a} \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )+\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{2 \sqrt {b}}\right ) \sin ^2\left (\frac {1}{2} (e+f x)\right )-4 (a+b) \text {arctanh}\left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-\frac {\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{\sqrt {a}}\right ) \sin ^2\left (\frac {1}{2} (e+f x)\right )\right )}{2 \sqrt {a} f \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^4\left (\frac {1}{2} (e+f x)\right )}} \]

input
Integrate[Csc[e + f*x]^3*Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
-1/2*(Cot[e + f*x]*Csc[e + f*x]*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Se 
c[e + f*x]^2]*(-(a*Log[a - 2*b - a*Tan[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*T 
an[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]]) - b*Log[a - 2*b - a*T 
an[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + 
 f*x)/2]^2)^2]] + a*Cos[e + f*x]*Log[a - 2*b - a*Tan[(e + f*x)/2]^2 + Sqrt 
[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]] + b*Cos[ 
e + f*x]*Log[a - 2*b - a*Tan[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f* 
x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]] + (Sqrt[a]*Sqrt[(a + b + (a - b) 
*Cos[2*(e + f*x)])*Sec[(e + f*x)/2]^4])/Sqrt[2] - 16*Sqrt[a]*Sqrt[b]*ArcTa 
nh[(-(Sqrt[a]*(-1 + Tan[(e + f*x)/2]^2)) + Sqrt[4*b*Tan[(e + f*x)/2]^2 + a 
*(-1 + Tan[(e + f*x)/2]^2)^2])/(2*Sqrt[b])]*Sin[(e + f*x)/2]^2 - 4*(a + b) 
*ArcTanh[Tan[(e + f*x)/2]^2 - Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e 
 + f*x)/2]^2)^2]/Sqrt[a]]*Sin[(e + f*x)/2]^2))/(Sqrt[a]*f*Sqrt[(a + b + (a 
 - b)*Cos[2*(e + f*x)])*Sec[(e + f*x)/2]^4])
 
3.1.96.3 Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.06, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4147, 369, 398, 224, 219, 291, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \tan (e+f x)^2}}{\sin (e+f x)^3}dx\)

\(\Big \downarrow \) 4147

\(\displaystyle \frac {\int \frac {\sec ^2(e+f x) \sqrt {b \sec ^2(e+f x)+a-b}}{\left (1-\sec ^2(e+f x)\right )^2}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 369

\(\displaystyle \frac {\frac {\sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 \left (1-\sec ^2(e+f x)\right )}-\frac {1}{2} \int \frac {2 b \sec ^2(e+f x)+a-b}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {1}{2} \left (2 b \int \frac {1}{\sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)-(a+b) \int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)\right )+\frac {\sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 \left (1-\sec ^2(e+f x)\right )}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {1}{2} \left (2 b \int \frac {1}{1-\frac {b \sec ^2(e+f x)}{b \sec ^2(e+f x)+a-b}}d\frac {\sec (e+f x)}{\sqrt {b \sec ^2(e+f x)+a-b}}-(a+b) \int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)\right )+\frac {\sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 \left (1-\sec ^2(e+f x)\right )}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {1}{2} \left (2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )-(a+b) \int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)\right )+\frac {\sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 \left (1-\sec ^2(e+f x)\right )}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {1}{2} \left (2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )-(a+b) \int \frac {1}{1-\frac {a \sec ^2(e+f x)}{b \sec ^2(e+f x)+a-b}}d\frac {\sec (e+f x)}{\sqrt {b \sec ^2(e+f x)+a-b}}\right )+\frac {\sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 \left (1-\sec ^2(e+f x)\right )}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {1}{2} \left (2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )-\frac {(a+b) \text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{\sqrt {a}}\right )+\frac {\sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 \left (1-\sec ^2(e+f x)\right )}}{f}\)

input
Int[Csc[e + f*x]^3*Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
((-(((a + b)*ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2] 
])/Sqrt[a]) + 2*Sqrt[b]*ArcTanh[(Sqrt[b]*Sec[e + f*x])/Sqrt[a - b + b*Sec[ 
e + f*x]^2]])/2 + (Sec[e + f*x]*Sqrt[a - b + b*Sec[e + f*x]^2])/(2*(1 - Se 
c[e + f*x]^2)))/f
 

3.1.96.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 369
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2* 
b*(p + 1))), x] - Simp[e^2/(2*b*(p + 1))   Int[(e*x)^(m - 2)*(a + b*x^2)^(p 
 + 1)*(c + d*x^2)^(q - 1)*Simp[c*(m - 1) + d*(m + 2*q - 1)*x^2, x], x], x] 
/; FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 0 
] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4147
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Simp[1/(f*ff^ 
m)   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a - b + b*ff^2*x^2)^p/x^(m + 1 
)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[( 
m - 1)/2]
 
3.1.96.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1344\) vs. \(2(109)=218\).

Time = 0.61 (sec) , antiderivative size = 1345, normalized size of antiderivative = 10.59

method result size
default \(\text {Expression too large to display}\) \(1345\)

input
int(csc(f*x+e)^3*(a+b*tan(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/8/f/a^(3/2)*((a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc 
(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)/((-cos(f*x+e)+1)^2*csc(f*x 
+e)^2-1)^2)^(1/2)*((-cos(f*x+e)+1)^2*csc(f*x+e)^2-1)*(-(a*(-cos(f*x+e)+1)^ 
4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*cs 
c(f*x+e)^2+a)^(1/2)*a^(3/2)*(-cos(f*x+e)+1)^4*csc(f*x+e)^4+2*ln((a*(-cos(f 
*x+e)+1)^2*csc(f*x+e)^2+(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e) 
+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)*a^(1/2)-a+2 
*b)/a^(1/2))*a^2*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+2*a^2*ln(2/(-cos(f*x+e)+1) 
^2*(-a*(-cos(f*x+e)+1)^2+2*b*(-cos(f*x+e)+1)^2+(a*(-cos(f*x+e)+1)^4*csc(f* 
x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e) 
^2+a)^(1/2)*a^(1/2)*sin(f*x+e)^2+a*sin(f*x+e)^2))*(-cos(f*x+e)+1)^2*csc(f* 
x+e)^2-8*b^(1/2)*ln(4*(b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+b^(1/2)*(a*(-cos(f 
*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e 
)+1)^2*csc(f*x+e)^2+a)^(1/2)+b)/((-cos(f*x+e)+1)^2*csc(f*x+e)^2-1))*a^(3/2 
)*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+3*(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*( 
-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)* 
a^(3/2)*(-cos(f*x+e)+1)^2*csc(f*x+e)^2-4*b*(a*(-cos(f*x+e)+1)^4*csc(f*x+e) 
^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a 
)^(1/2)*(-cos(f*x+e)+1)^2*a^(1/2)*csc(f*x+e)^2+2*ln((a*(-cos(f*x+e)+1)^2*c 
sc(f*x+e)^2+(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc...
 
3.1.96.5 Fricas [A] (verification not implemented)

Time = 0.79 (sec) , antiderivative size = 849, normalized size of antiderivative = 6.69 \[ \int \csc ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\text {Too large to display} \]

input
integrate(csc(f*x+e)^3*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
[1/4*(2*a*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 
 ((a + b)*cos(f*x + e)^2 - a - b)*sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 - 
 2*sqrt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) 
+ a + b)/(cos(f*x + e)^2 - 1)) + 2*(a*cos(f*x + e)^2 - a)*sqrt(b)*log(-((a 
 - b)*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x 
 + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2))/(a*f*cos(f*x + e)^2 - a*f), 
1/2*(((a + b)*cos(f*x + e)^2 - a - b)*sqrt(-a)*arctan(sqrt(-a)*sqrt(((a - 
b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a) + a*sqrt(((a - b)*c 
os(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + (a*cos(f*x + e)^2 - a)*s 
qrt(b)*log(-((a - b)*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(f*x + e) 
^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2))/(a*f*cos(f*x 
+ e)^2 - a*f), -1/4*(4*(a*cos(f*x + e)^2 - a)*sqrt(-b)*arctan(sqrt(-b)*sqr 
t(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b) - 2*a*sqrt( 
((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) - ((a + b)*cos(f 
*x + e)^2 - a - b)*sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 - 2*sqrt(a)*sqrt 
(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + b)/(cos(f 
*x + e)^2 - 1)))/(a*f*cos(f*x + e)^2 - a*f), 1/2*(((a + b)*cos(f*x + e)^2 
- a - b)*sqrt(-a)*arctan(sqrt(-a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f* 
x + e)^2)*cos(f*x + e)/a) - 2*(a*cos(f*x + e)^2 - a)*sqrt(-b)*arctan(sqrt( 
-b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b) +...
 
3.1.96.6 Sympy [F]

\[ \int \csc ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \sqrt {a + b \tan ^{2}{\left (e + f x \right )}} \csc ^{3}{\left (e + f x \right )}\, dx \]

input
integrate(csc(f*x+e)**3*(a+b*tan(f*x+e)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*tan(e + f*x)**2)*csc(e + f*x)**3, x)
 
3.1.96.7 Maxima [F]

\[ \int \csc ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int { \sqrt {b \tan \left (f x + e\right )^{2} + a} \csc \left (f x + e\right )^{3} \,d x } \]

input
integrate(csc(f*x+e)^3*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*tan(f*x + e)^2 + a)*csc(f*x + e)^3, x)
 
3.1.96.8 Giac [F(-2)]

Exception generated. \[ \int \csc ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\text {Exception raised: TypeError} \]

input
integrate(csc(f*x+e)^3*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
 
3.1.96.9 Mupad [F(-1)]

Timed out. \[ \int \csc ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \frac {\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{{\sin \left (e+f\,x\right )}^3} \,d x \]

input
int((a + b*tan(e + f*x)^2)^(1/2)/sin(e + f*x)^3,x)
 
output
int((a + b*tan(e + f*x)^2)^(1/2)/sin(e + f*x)^3, x)